
Computer Organization and Architecture: A Pedagogical Aspect

Prof. Jatindra Kr. Deka

Dr. Santosh Biswas

Dr. Arnab Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Lecture - 10

Instruction Format

Welcome to the 4th lecture or that is the 4th unit of the module on addressing mode, instruction

set and instruction execution flow.

(Refer Slide Time: 00:35)

So, in the last three units we have basically discussed what what is the basically a CPU? What

it consists of; and how it is interfaced with the main memory and then we have gone into the

details of basically, what is the basic motive of this module is to understand how a basically an

instruction executes in a CPU. So, in that in that direction, first we had seen in the last unit that

how our instruction is basically executed.

That in a Von Neumann architecture we know that it is already the data and the code is in the

main memory and then slowly one after another the instructions are fetched, decoded and

executed. So, that is basically the instruction execution. So, up to that we have seen in the last

unit.

311

So, now in today’s unit we are going to focus on instruction format, because as I told you this

module will mainly deliver or you will be able to understand, basically how to design an

instruction given a set of requirements or a set of specification that is the main goal actually.

So, for that we first now look in a more generic fashion that what is an instruction and what is

the basic format? So, this is the unit four of this module.

(Refer Slide Time: 01:39)

And then as we told that the course is being delivered in a pedagogical perspective. So, first let

us see what is the unit summary. So, the in the in this unit basically you will be studying the

generic format of an instruction. So, as an instruction as we have discussed in the last unit that

basically a instruction executes or does the general operations in a computer. So, if there is an

operation to be done. So, we require basically two things one is, what operation I have to do?

And, basically on what operands you have to do the operation.

So, basically opcode and source and result operands these are the two very important things.

So, the most fundamental thing even if it’s a non-computer perspective. So, even if I ask you

that you have to operate add two numbers. So, this is one of the very basic instruction we do in

the low level school days.

So, this is basically an instruction. So, what is the format of an instruction? So, if I order you

something. So, I have to tell you, what to do and also I have to tell you on what objects you

have to do the operation and where you have to store the result. So, that is actually called the

opcode; that is, what operation you have to do?

312

Like for example, you have to move an operand, you have to add two numbers etcetera,

etcetera. And then you have to tell that what are the operands? That is the in case of a computer

the operands are actually some immediate operations some immediate values which are

specified in the instruction or in the more broad terms for the time being you can think that the

values of the operands, that is the variables and the values of the variables are stored in some

memory if it’s a Von Neumann architecture.

So, a source operand reference; that is, where the value of the operand is stored in the memory,

that is; the second part which is basically has to be there in the instruction. Then of course, I

do some operation, now what I do with the result in that has to be stored in somewhere stored

in some memory whether it may be a register it can be a memory location etcetera.

So, that is the result operand reference that is; where you have to store the result. So, these

things are basically of from a layman language as for as well as our computer prospective these

three stuff should be there in an instruction.

But, when you are thinking over computer prospective or a code prospective, then after one

instruction you have to execute another instruction. So, of course, you have to also tell in that

instruction that which is the next instruction to be fetched. So, the reference of the next

instruction that whether, it is the next immediate instruction or whether it is a jump instruction

whether it will go to some other forward referencing or it may loop back.

So, that reference also should be there so. In fact, if you talk of an instruction you have

basically, what to do? On, what to do where you have to store the result and what to do next

whether this is last instruction or whether the next immediate instruction has to be taken or then

to some condition you have to go some other places to jump in the memory.

So, that is the basic format of an instruction again as I told you one very important as I, now

we will see little bit like how many? What How do you decide the length of an instruction? So,

of course, you have opcode. So, it is represented in binary. So, if I said that the opcode is 3 bits.

So, how many operations are possible 23, 8 operations are possible.

So, if your specification says that 8 operations are fine like you can have load, store, add,

subtract, multiply then more or less I am very happy with 3 bit opcode, but if I have lot more

to do like I want to add immediate I want to add two numbers from a register, then, if I can

have multiply I can have subtract I can have divide and it is what not.

313

So, in that case the numbers of instructions are much more. So, in that case the number of bits

in the opcode will be larger. So, as I given in the example in the summary that depends on the

bit size of the opcode of the reference you can decide how many instructions or how many

different type of operations are supported.

(Refer Slide Time: 05:17)

Then, basically as I told you many times in the last 2, 3 units that basically an instruction is

divided basically into three types like: mathematical, arithmetic operation. Then you can have

some load store operation and there is read write and there is some logical operation that is

jump on 0 jump not on 0 etcetera; and one more thing.

So, there are basically that therefore, actually the next part means of basically; if these things

are more or less of basic prerogative of an instruction that these are the basic stuff required like

opcode, source, destination and what next instruction and basically three categories of

instruction like arithmetic, logic etcetera.

So, if you take a logical memory operation. So, sorry in arithmetic operation, we generally have

two operands it can be add, multiply, subtract. And generally we take two sometimes unary

operations unary operands also can be there like for example, this is the number you want to

negate it.

So, one operand is also possible, but there cannot be any 0 operand instruction, that is very

obvious and again before you go to the main stuff. Actually, as I told you that all these

314

instructions basically are represented in binary like for add there should be an opcode and there

may be the representation of can be 101, sub the opcode representation may be 111, but if you

write a instruction like say 110.

Then may be 0011 and then 0011 something like that. Then, what it means? It will mean add

and this may correspond to the third register and this may correspond to 3 memory location

number 3. So, it will say add whatever value of the variable stored in third memory location to

the register number three very difficult to understand.

So, we generally write in a mnemonic fashion add 𝑅3 to 03 sorry 3 hex. So, it was it will say

that ADD 33 hex. So, what does it mean you take the value of memory location 3 in hex and

then add it to register number 3 and give to it will be addition and write back.

So, this way instructions are represented will which we can read very nicely and easily. So,

therefore, with all these mnemonics these are actually these abbreviations are called basically

mnemonic way of representation like instead of add instead of 101, we will write add sub we

will not write the binary version. So, from now onwards throughout this course whenever we

will talk about the instructions we have to understand inherently that they are all represented

in binary in a physical computer, but in this case for ease of representation we do it in a

abbreviation form which are mnemonics. So, that is what is the summary of the chapter of this

unit.

(Refer Slide Time: 07:52)

315

So, what are the objectives? That is going to we are going to fulfil after doing this unit basically

we will be available to describe you will develop knowledge. So, recall type of an section in

objective which will say the describe the different elements of a machine instruction and some

possible formats; that is, how basically an instruction looks, then you will be able to illustrate

very important instruction formats which were developed in the pedagogy of computer science

or in the history of computers; that is three address instruction, two address, one address and

even 0 address instruction very interesting that we will have many operand there, but how it

will operate. So, 0, 1, 2, 3 basically these are the formats opcode is single.

Because, opcode will tell you what to do and the operands can be 0, 1, 2, 3 the 0 is very

interesting and it will not have 7, 8, 9 instruction I means 9 operands, why? Because, otherwise

the instruction will be very long it will be very difficult to store in the memory and then as a

knowledge you will be tell the different you will able to identify the different type of component

involved like given an instruction with which section represents the operation, which section

represents the data, where the data is located etcetera.

(Refer Slide Time: 08:51)

So, let us go to in details of the unit. So, basically the generic elements of an instruction and its

format so, there are some of the very mandatory features or the mandatory part of an

instruction; that is, the opcode as we already discussed unless you tell what to do nobody can

say that this is an instruction.

316

So, every instruction will minimum have an opcode; that is minimum and this is generally

represented in binary. So, if you have 1000 instructions. So, if you have 1000 different tasks to

do to. So, you should have 10 bits for the opcode. So, that is very simple. So, based on the

number of instructions required you pick a log and that will be size of the opcode, then very

important is the source of operands like where.

So, it can be 3, 2, 1 ; that means, if I say add say 30 hex ; that means, whatever is the value of

the instruction is says that add, take the memory location 30 hex take the value, but add where.

So, in this case if nothing is mentioned is a de facto standard then it’s a accumulator. So,

whatever value in the accumulator as I already this as accumulator is a special type of register

the value of the whatever value we will be having in memory location 30 hex will be added to

the value which is already stored in accumulator and it will be added back to this. So, if I do

not write anything in this place. So, it will de facto means that it is accumulator.

So, this is a single word sorry single one address or a single operand type of an instruction.

Now, why this is very good? Because, the size of the instructions are small because you can

say ADD 30 and that maybe if you have some 1000 instructions. So, this one will take 10 bits

and this is 4 + 4, 16 bits. So, your memory word length will be 16 bits, but say for example,

two address.

So, in this case I can have something like add may be say a register one and then can be 30 hex

now you see as defined. So, I will have 10 bits for that, because you require 1000 plus

instruction types, register may be if you have 32 registers. So, all registers will have different

binary values.

So, it will be taking 5 bits 32 registers should be 25 bits 32, 5 bits will be taken and should be

again 32 bits. Now we can see 18 + 5 so, it is 23. Now, 23 bits are required. So, if you assume

that your memory word length is say 16 bit. So, in this case what will happen?

This instruction if there is a two address instruction will not fit into a single memory word. So,

it will become a double word memory the double word instruction, that is; one part will be here

and then will be other part will be here. So, you will format it in such a way. So, that it becomes

32 bits that we can alignment can be taken care of, but the main goal is to say that now it will

become a double word instruction.

317

So, first when we fetch the instruction you have to take two memory locations at a time at a

time you cannot do. So, you first fetch a part of the memory, that is; first location then you

fetch the second part join them in the instruction register may be there can be can be two

instruction registers the width of the instruction registers has to be increased two instruction

registers you put in parallel jointly and then you decode it and do it.

So, you we will understand that it is more cumbersome to do it rather than if you have add and

I said that de facto standard is accumulator in this case that is 8 + 10, 18. So, in this case also

it’s a bit difficult. So, it may go ahead, but let us assume that for the time being if I have a 20

size memory, then you can easily see that add 30 hex will easily fit in one word. So, here we

are taking all hypothetical examples, but to just illustrate the concept that if you have a large

long instruction then basically the problem is that you will require multiple words to store in

the memory, and when you fetch and decode there are more number of steps involved and the

hardware is also complex, because if I say that the width of the memory is 20 or the word size

is the 20 bits; then this instruction will fit 10 + 4 + 4, 18.

So, just a single instruction will be fetched single instruction will be fetched, decoded and

executed, but if you take a double two address instruction. So, in this case it is 23. So, it will

be one memory location plus another. So, generally these instructions are formatted in such a

way that either it takes one word or it takes two word not generally one and half this is just to

give an example.

That, in now it will take more than one word. So, instruction and decoding and all those things

will be much more cumbersome similarly with the three address of course, three address means

you can have say something like that I can say ADD 𝑅1, 𝑅2, 𝑅3. So, in this case the value of

𝑅1 will be added to 𝑅2 and will be stored at 𝑅1. So in fact, what happens that I can add three

numbers together.

So, it may have the value of 3 it may have the value of 2 it may have the value of value 5. So,

I require 3 + 2 + 5, I want to do you can write add 𝑅1, 𝑅2, 𝑅3; that is, the value of 𝑅3 will be

added we will be added to 𝑅2 will be added to 𝑅1 and everything will be stored back in 𝑅1,

basically that is the instruction format or how the instruction happens. In this case if it is the

single if it is two address, then basically you can take only 𝑅1, 𝑅2, that is; first we will be

adding 3 + 2, then we will be storing in some temporary register like 𝑅1 and then again the

new value we have to add to the existing.

318

So, there will be multiple numbers of steps so let us look at it in a more nice fashion. So, that

the so, disadvantages already we have seen that if you take very long long instructions, then

the memory words will be more and then the problem arise will be you have to have two

memory location has to be fetched for an instruction, then decoder it will be slower and more

hardware complex, but what the advantage is larger the instruction you can do same operation

with less number of instructions like three address say that I have to add 3, 2 and 5. So, they

are in three different registers for the time being let us assume.

(Refer Slide Time: 14:39)

So, we can write ADD 𝑅1, 𝑅2, 𝑅3. So, very simple value of 𝑅3 will be added to 𝑅2 will be

added to 𝑅1 and everything will be stored back to 𝑅1. So, one instruction will do the purpose,

but if it is a two word instruction; then you are gone. So, in fact, what will happen it will it will

not be able to do it in 2.

So, this is the case. So, 𝑅1 and 𝑅2 so, first 3 + 2 will be added and it will be stored in 𝑅1. So,

next instruction you have to write ADD 𝑅2; sorry 𝑅1, 𝑅3. So, first stage what will happen 3 +

2 will be added, because in 𝑅1 there is 3 𝑅2 there is 2 they will be added and the value will be

stored in 𝑅1. Next instruction will be ADD 𝑅1, 𝑅3. 𝑅3 it is 5. So, now, it will 5, 5, 10 and it is

stored.

So, you require two instructions to solve the problem. So, your code will become larger. So,

therefore, basically this is a trade off, but if you look at the current trend people have all gone

319

for shorter instruction length because our computers have nowadays become more and faster

than the number of executing one after another instruction is quite faster.

So, people have gone in this direction that if the instruction smaller less width execute more

number of instructions per cycle, because your CPU processors are much faster rather than

making these instructions very complex and taking multiple words in the memory that is what

is the trend and very interestingly we study about what is the 0 address instruction, there is no

operand specified.

(Refer Slide Time: 16:17)

Like if I say add then where are the operands. So, whenever you say that I am doing with a

zero word instruction or zero address instruction so. In fact, there is a stack involved with it.

So, in that stack there will be different elements like for example, there are three there are these

two. So, and then you place the 5.

So, in case what will happen you have to write ADD and ADD. So, what is going to happen in

this case. So, whenever you say add or any instruction you give it will take the first two

elements depending if is the two address or three address.

Basically, but in fact, in case of zero address instruction basically why it happens is that we

default there is a stack attached to it and whatever operation you attach like add if you say add

it will take the first two elements on the top the stack. It will be popped up added and the value

320

will be pushed to this stack may be if you say negate is a single bit instruction is single operand

instruction.

So, the first value of the stack will be popped up made 5 and push it back. So, if I write add.

So, what will happen 5 and 2 will be popped up and then what is it will be added up. So, it will

be first it will be popped up.

(Refer Slide Time: 17:14)

So, 5 and 2 will be popped up 7, the value of 7 will be written over here.

Next if I say another add the first two will be taken and they will be popped up and the value

of 10 will push back.

321

(Refer Slide Time: 17:20)

So, whenever I told that zero address means is nothing to be surprised; that means, in the

instruction itself you are not saying where are the operands, but the there is a different stack

attached to it and it will start operating on the elements of this stack my first pushing means

popping them up and doing the operation and push back.

So, if it’s the unary operation like negate all those things single will be popped add means two

will be popped. Generally, we have never heard that three values are popped and the operations

has been done that architecture was never popular ok.

(Refer Slide Time: 17:48)

322

So, now we have told so, many theory. So, let us try to give some proper examples. So, it’s an

example of an instruction of a three instruction; three address instruction add 𝑅1 3030 hex and

3031 hex. So, what did it say the opcode is ADD. So, as I told you we will be always using

mnemonics will be never writing the binary value. Destination is the register 𝑅1 if there are 32

registers all the registers themselves will also have some binary representation it can be all

00001, because if there are 32 number of registers.

So, the number of bits required will be 5 and register 𝑅1 means it will be 00001, but for ease

of representation we will always use a mnemonic format. So, three words three address. So,

this is the location of the first operand this is the location of the second operand and as I told

you slowly we will see that when we will be going more advanced into the instruction types.

So, sometimes add it may tell that I have to add what is the location value here what is the

value here and store it in 𝑅1.

Sometimes it may also mean that whatever value is present in 31, 30 you add them along with

the whatever the value in 𝑅1 and the result you store in 𝑅1. So, that we will tell on the time of

instruction as I told you that many times you have 1000 plus instructions. So, how many

instructions can be possible right very difficult to think of 1000 instruction add multiply

subtract load jump etcetera, but you have to think that the number is not impractical.

Because add can be of several types in this case I can say that it is add 2. So, I can say that it is

add 2, what does it mean? It means it will take the variables or the operands from the last two

or the last two operands and it will add to 𝑅1 and I can also say there can be another format 𝑅3

add 3 what it will do?.

It will take the value present in 31 30 as well as an 𝑅1 and together the value will be stored in

𝑅1 just like if I say that add single address instruction add 3030 hex. So, what does it mean it

means whatever the value is present in 30 add to the accumulator and write it back so that

means, you can have the formats or the architecture possible in which case also the register will

be involved in the operation rather than just load and store. So, this one will make your

instruction more effective and short. So, what I wanted to say is that add can be of several types

even something can be like add immediate, likewise; I can say that add immediate what does

it mean add immediate 30 hex. So, what does it mean? Add immediate means this 30 is now

not a memory location this is basically the immediate value of 30 in hex.

323

So, whatever in the accumulator will be added to 30, and it will be written back to this written

back to the accumulator, immediate means the value of the operand is specified in the

instruction itself. So, in other words add can be of you know different types 20 types

multiplication can be of so much variation, store can be of so much variation, jumps can also

have so many variations.

That is why the number of instruction even if the basic operands operations like add multiply

subtract store can be very few, but the variations are huge in number. So, therefore, 1000

different instructions or 500 different instructions or 200, different instruction is not a

impractical number they are very much practical. So, anyway that is not the concentration of

the or consideration or the not the method of I mean not the point of focus here. Here we are

just trying to see what are the different instruction format and basically how they are

represented.

So, in this case we tell you that it’s a 3 address instruction. So, these are the 3 address and this

is the opcode means where it is stored where the values etcetera are we will be coming later

when we will be going into more depth of instruction, how to design an instruction? What are

the different types of instructions etcetera?

Now, the instructions set design etcetera we will be taking up in the next three units, then all

those things will come that what is the add what is add immediate etcetera, then this is actually

example of a single address instruction as I told you. So, one address instruction means

basically there is nothing mentioned over here this is basically the accumulator that mean

already the accumulator is de facto given over here.

So, whatever the value will be represent in 3030 memory location will be added to the value

already stored in the accumulator and you have to store back in this one. So, these are the basic

instruction I have shown you as an example ok.

In fact, if you if you consider two or instruction. So, you can have add 𝑅1 3030. So, in that

case it’s a 2 address instruction. So, one will be the memory location on will be in the 𝑅1 and

you can store it back in the 𝑅1.

324

